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Summary. The expansion of the spin-coupled wavefunction in Slater determi- 
nants constructed from nonorthogonal spin-orbitals is discussed. It proves 
possible to generate from cofactors of the appropriate overlap matrix all the 
density matrices, up to fourth order, required for the variational optimization of 
the wavefunction. The computational effort inherent in this 'super-cofactor' 
strategy scales in a very acceptable manner with the number of electrons. 
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I Introduction 

Recent years have seen a considerable revival of interest in proper modern 
generalizations of the ideas of Heitler and London [1], and of Coulson and Fischer 
[2] to many-electron molecular systems, without the imposition of orthogonality 
constraints or restrictions on the pairing of the electron spins. It is not appropriate 
here to review all of this work: representative recent accounts of efficient 
algorithms include Refs. [3-8]. A significant role in the resurgence of interest in 
modern valence bond descriptions of electronic structure has been played by 
spin-coupled valence bond or SCVB theory. The SCVB approach has now been 
applied successfully to a very wide range of chemical problems, and numerous 
recent reviews are available [4, 9, 10]. The purpose of this paper is to describe the 
expansion of the spin-coupled wavefunction in Slater determinants constructed 
from nonorthogonal spin-orbitals and to present a new strategy for obtaining the 
required density matrices using the L6wdin formula [ 11]. The algorithm described 
here evolved from an earlier scheme developed by Sironi [16]. 

The spin-coupled wavefunction, which is based on the antisymmetrized 
product of a single spatial configuration and the full spin space, provides a clear- 
cut chemically appealing picture of correlated electronic structure. This wavefunc- 
tion constitutes an excellent starting point for more sophisticated multiconfigura- 
tion SCVB calculations. In general, the spin-coupled configuration dominates the 
final SCVB wavefunction and so it is possible to claim that this further quan- 
titative refinement does not significantly modify the essential physical picture. 
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The single-configuration spin-coupled wavefunction for an N-electron system 
with total spin S (and projection M) takes the form: 

TSM = (N!)1/2 E Cskd~/[¢l (D2 N " '"  ¢ N O  SM;k] (1.1) 
k 

in which the singly-occupied orbitals ¢1 - ¢N are nonorthogonal. The 6) SM;kN 
form a complete set of N-electron spin eigenfunctions of 5 2 and of S~. The Csk, 
which are termed spin-coupling coefficients, indicate the relative importance of 
the different modes of spin coupling, denoted by the index k. The dimension of 
the spin space is given by: 

(2S + 1)N! (1.2) 
fU _ (½N + S + 1)!(½U - S)! 

There are, of course, many different ways of constructing the u 6) SM;k, with the 
most appropriate choice being dictated to a large extent by computational 
convenience as well as by the nature of the problem being studied. A useful 
account of different spin bases and of the relationships between them has been 
presented by Pauncz [12]. It is often instructive to transform the converged 
spin-coupling coefficients between the Kotani, Serber and Rumer bases [13]. 

In the case of the Kotani ('branching diagram') basis, the 6) SM;k form a basis 
for orthogonal irreducible representations of SeN, the symmetric group of degree 
N. In one strategy for calculating spin-coupled wavefunctions, all of the various 
orders of density matrix required for optimizing the spin-coupled orbitals 
( ¢ 1 -  CN) and the spin-coupling coefficients (Csk) are constructed from the 
corresponding representation matrices of the symmetric group. This algorithm, 
which may be termed 'the symmetric group approach', has been reviewed many 
times [4, 14, 15] and so it will not be described again here. However, it is 
important to notice that the current implementation of this approach utilizes all 
N! representation matrices, each of which is of dimension f s  N. The total number 
of matrix elements which must be processed increases very rapidly with increas- 
ing N, as indicated in Table 1, and so it seems very worthwhile to develop 
alternative schemes. 

The structure of the paper is as follows. We identify in Sect. 2 the various 
orders of density matrices required for optimizing the spin-coupled wavefunc- 
tion. The computation of density matrices from cofactors is discussed in Sect. 3 

Table 1. Number  of elements (3~) of  representation 
matrices processed in the 'symmetric group approach'  

N S f ~  .~ 

6 0 5 1.1 × 10 4 
7 1 14 5.0 × 105 
8 0 14 4.2 × 106 
9 ½ 42 3.3 × 10 s 

10 0 42 3.3 × 109 
11 ½ 132 3.5 × 1011 
12 0 132 4.2 x 1012 
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and our new strategy, which we term the 'super-cofactor approach',  is described 
in Sect. 4. Some observations and final comments are presented in Sect. 5. 

2 Density matrices required in spin-coupled theory 

The spin-coupled wavefunction described in the previous Section can be recast in 
the form: 

TsM = ~ Csk T~ (2.1) 
k 

in which each of the 'structures': 

~"t k = (N[)1/2~.~[q~ 1 ( F  1 )q~2(r2) ' ' "  (gN(r N)O NM;k] (2.2) 

is constructed from the same orbital product. The expectation value of the 
energy of the spin-coupled wavefunction is given by: 

1 
E = ~ ~ ~ CskCs, Hk, (2.3) 

in which Hkt is a matrix element of the usual spin-independent clamped nucleus 
hamiltonian between structures ~k and TI, and A is the normalization integral. 
These hamiltonian matrix elements can be written: 

]l,V kt,V,0",'f 

where (¢~ ]/41 ] q~ } and ( ¢ ,  q~. ]/42] ¢~q~ } are the usual one- and two-electron 
integrals in the orbital basis. The Dkl(/z Iv) and the Dkl(pv ]az) are, respectively, 
elements of the one-electron and two-electron density matrices, and contain all of  
the effects of the nonorthogonality of the orbitals. 

The different orders of  density matrices are related to one another by a 
hierarchy of equations reminiscent of the Laplace expansion of  a determinant: 

Dk~(#~ " " " P~_, I V l " ' 'Vn_ , )  : 2 D k l ( f l l  " " " ]2n l ~ n  I Vl'"Vn-lVn)<¢~nl¢~n> 
vn 

(2.5) 

for any #, different from # ~ , . . . ,  #, 1. Each of the density matrices is invariant 
to any simultaneous permutation of the/~i and of the vj, and obeys the further 
symmetry property: 

Dkl(Pl"'" ~n ] Vl ' "" vn) = Dik(vl"'' v~ ]/,q - • •/tn) (2.6) 

As a consequence, it is possible to generate all of  the Dk~(p~ • '" #n_ ~ I Vl • • " v,_ 1) 
from a subset of the Dkt(#l""" # , - l # n  Ivy' '"  vn_~v,) with p, = N. 

The normalization integral, A, can be written: 

A = ~, ~ CskCs, Akz (2.7) 
k l 

where Akl, the overlap between structures T k and T~, is related to the one- 
electron density matrix according to: 

Ak, = Y Dk,(~ [ v)(¢,  ICy) (2.S) 
v 
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The orbitals, qS~- q~N, which are common to all of the spin-coupled struc- 
tures in Eq. (2.2), are expressed as linear combinations of  a set of m atomic basis 
functions, Zp : 

42~ = ~ cvpZp (2.9) 
P 

All of the C~p are variationally optimized simultaneously with the spin-coupling 
coefficients (Csk) appearing in Eq. (2.1). In common with other electronic 
structure approaches, the s t ra te~  adopted is based on the Newton-Raphson 
scheme. This requires first and s~ond  derivatives of the total spin-coupled 
energy with respect to all the variational parameters (cv~ and Cs~ ). 

For our present purposes, it is su~cient to examine which density matrices 
appear in the expressions for the first derivatives. It should be clear from the 
f o ~  of Eqs. (2.3) and (2 .~ that the computation of ~E/'~Cs~ does not require 
density matrices higher than De~(l,v ~ ) ,  which is already used in the computa- 
tion of the energy. In the case of 3E/Oc,p, we require: 

] &~ D~,(.~m l v, v:) D ~ z ( # ~  l v~ v : ) < ~ ,  > 

N 

= Z I > 
v 

where we have used the fact that the derivative of D~(~  •. " ~ [ v~ " • • v~) with 
respect to c,p must be zero if g matches any of ~ . . . . .  #~. Thus, in order to 
calculate ~E/&,e we req~re density matrices up to third order. 

It is convenient to introduce simplified notation as follows: 

D~ for D~(~  .-" g~ ~ v~--. v,~) (required up to n = 2) 

D~ for ~ Cs,[Dk,(~ " " " ~, I v1" " " v~) + Dk,(V~ " " " v~ I #~ " " " /~-)] 
I 

(required up to n = 3) 
(2.11) 

D ~ for ~ ~ CskCs, Dk,(# , ' ' "  #, I Vl"'" v,) (required up to n = 4) 
k l 

The highest-order density matrices of each of these three types are used as 
follows: D 4 to compute O2E/&~p aC~ql D~ to compute O2E/acu~ aCse, and 2 D~, to 
compute O~E/~Cs~. gCs~. However, in the case of the spin/spin block of the 
second-derivative matrix (or Hessian), it turns out that it is more e~cient to use 
directly Eqs. (2.3) and (2.7) to derive: 

~ E  = H ~ , - E A ~ ,  ~ -  ~ c s ~ A ~ , ?  ~E 
~Cs~ &s~ ~ OCs~ 

Explicit f o ~ u l a e  for the first and second derivatives of  the spin-coupled energy 
with res~ct  to the variational parameters (c~p and Cs~) have been Nven by Pyper 
and Gerratt [ 15]. 
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From the definitions of the density matrices, and the various symmetry 
properties, it follows that the numbers of unique elements are as follows: 

~ (D  n) = ½cg(cg + 1)n! 

N(D ~) = N(D")fN (2.13) 

= N(D )sf~ (f~ + 1) 

in which 

(~ = (2.14) 
n 

The numbers of unique elements are listed in Table 2 for a few representative 
values of N (for the case with lowest spin). For  these examl~les, the largest value 
of N for a density matrix essential for the calculations is N(D 3) = 1.9 x 107 for 
N = 12, S = 0,f~' = 132. These D~ quantities are used to construct the mixed 
orbital/spin-coupling block of the Hessian. For  this system, we also require 

1.0 x 107 elements of D 4 to build the orbital/orbital block of the Hessian. The 
value of N(D41) rapidly becomes particularly large and so it is very fortunate that 
these quantities are not required. 

Table 2. The numbers  of  unique density matrix elements for a few representative values of  N (for the 
case with lowest spin) 

N S f ~  n D ~ D~ D~t 

6 0 5 1 21 105 315 
2 240 1200 3600 
3 1260 6300 18900 
4 2880 14400 43200 

1 14 1 28 392 2940 7 
2 462 6468 48510 
3 3780 52920 396900 
4 15120 211680 1587600 

8 0 14 I 36 504 3780 
2 812 11368 85260 
3 9576 134064 1005480 
4 59640 834960 6262200 

9 ½ 42 1 45 1890 40635 
2 1332 55944 1202796 
3 21420 899640 19342260 
4 192024 8065008 173397672 

10 0 42 1 55 2310 49665 
2 2070 86940 1869210 
3 43560 1829520 39334680 
4 531720 22332240 480143160 

11 ½ 132 1 66 8712 579348 
2 3080 406560 27036240 
3 82170 10846440 721288260 
4 1310760 173020320 ~ 1.15 x 10 l° 

12 0 132 1 78 10296 684684 
2 4422 583704 38816316 
3 145860 19253520 ~ 1.28 x 109 
4 10256400 ~ 1.35 x 101° ~9.00 x 101° 
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3 Evaluation of density matrices from cofactors 

N Each of the spin functions OsM;k in Eq. (2.2) can be expanded in the following 
fashion: 

Na 
N O sM;k = ~ bikg2z (3.1) 

Z 

in which the symbol f2 z denotes a string of N~ ~'s and N~ fl's (N = N~ + N~), and 
the limit of the summation is given by: 

In this way, each spin-coupled structure can be rewritten as a linear combina- 
tions of Slater determinants, Uz, constructed from N nonorthogonal spin- 
orbitals: 

Na 
~k = ~ 5zkU, (3.3) 

Z 

where the index I corresponds to that used in O z. In the particular case of the 
Ruiner basis, all of the bzk are zero or + 1. It is also straightforward to generate 
the values of bzk appropriate to the Kotani basis. 

For each pair of Slater determinants, Uz and U j, we can define Szs, the 
matrix of overlap integrals between the spin-orbitals appearing in the two 
determinants. Cofactors of various order, such as SzJ(/q#21 v~v2), can then be 
generated by striking out appropriate rows and columns. It is useful to define the 
symbol 6is(#v) to be unity if the spin of the / t th  spin-orbital in Uz matches the 
spin of the vth spin-orbital in Uj, but to be zero otherwise. With these 
definitions, the L6wdin expression [11] for the matrix elements of the hamilto- 
nian between Slater determinants constructed from nonorthogonal spin-orbitals 
can be written: 

/.t ,'~ 

II,v,rr,T 

Comparing Eqs. (2.4), (3.3) and (3.4), we can identify: 

N d Nd 

Dk,(lg [ v) = • 2 bzkbs, 6,s(#v)SH(# I v) 
I J 

Na Nd 

Dk,(# v I = Z Z bikb,, I (3.5) 
1 J 

and in the general case [16]" 

N d N d  

Ok,(# , ' ' "  #. I v y " "  v.) = Z  2 bzkbJ, azs(#iv,) "'" 6.(#.v.ISH(#1" " " lz. l Vl" • • v,) 
I J 

(3.6). 

Because of the orthogonality of the c~ and fl spin functions, the 
S z j ( # ~ " ' # ,  I Vl'" .v,), which are cofactors of the overlap matrix between 
spin-orbitals, assume block diagonal form. This reduces to N~ - n ~  and N~ - n ~  
(n = n~ + np) the dimensions of the minors which must be evaluated in order to 
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Table 3. Total numbers of sub-determinants of dimension n required for the computation of all the 
density matrices for the cases considered in Table 2 

N S n = l  n = 2  n = 3  n = 4  n = 5  n = 6  

6 0 21 120 - 
7 ½ 28 231 630 - - 
8 0 36 406 1596 2485 
9 ½ 45 666 3570 8001 8001 - 

10 0 55 1035 7260 22155 31878 - 
1 66 1540 13695 54615 106953 106953 11 

12 0 - 2211 24310 122760 314028 427350 

construct  the density matrices. In Table 3, we list the total numbers  o f  minors  o f  
each dimension required for the computa t ion  o f  all the density matrices (for  the 
cases considered in Table 2). The computa t ion  o f  all the required minors  is very 
fast but, in any case, all o f  them are already available in our  p rogram from the 
mos t  recent energy evaluation. 

4 The super-cofactor strategy 

A suitable precursor  for both  D 4 and D~ is D 4 but, as indicated in Sect. 2, only 
the subset o f  the D 4 with ]24 = N is actually required for the step D 4 - * D  3. It  is 
convenient  to refer to sets o f  'unique '  indices /~1 < #2 < ~3 < ~4 as ibra and 
Vl < v2 < v3 < v4 as jket, with ibra ~>jket. I t  is necessary to generate the 4! = 24 
elements o f  0 4 o r  D 4 which correspond to the different permutat ions  o f  the v's 
for a given set of /~ ' s .  However,  it is not  necessary to permute also the /~'s, 
because of  the symmetry  proper ty  embodied in Eq. (2.6) - analogous consider- 
ations apply to the other quantities listed in Eq. (2.11). Because o f  the manner  
in which the elements o f  O 4 and D 4 are utilized, it is appropria te  to loop over 
ibra, generating in each pass only those port ions o f  these density matrices which 
correspond to a given set o f  # 's .  The relevant elements can be discarded once 
they have been used. In the description which follows, we refer to the corre- 
sponding arrays for a single value o f  ibra as D4 and D4k. 

The form of  Eq. (3.6) suggests that  the construct ion o f  each unique density 
matrix element f rom cofactors o f  the overlap matrix between spin-orbitals (Sis) 
involves N~ terms. However,  the occurrence in this equat ion o f  the spin integra- 
tion factors, (~lj(J21Vl)'''(~lJ(#nVn), reduces significantly the computa t iona l  
effort. Al though  it is necessary to consider different arrangements  o f  the e ' s  and 
fi's, in order to permute the v's for a given set of/~'s,  non-zero contr ibutions can 
only arise when n~ and n B, the number  o f  ~'s and fl's, is the same for ibra and 
jket. 

I t  is useful to classify the Nd terms in each summat ion  for an element o f  D4  
or  D4k according to n/~, the number  o f  fl's, and to recognize: 

4][41 
n¢ NI~ --  n B n• 

For  a given value o f  n~, the number  o f  different arrangements  of  the ~'s and fl's 
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(or 'types') is given by: 

[41 ntype(n~) = n~ 

and the number of determinants of order N - 4 and of each type is: 

I N - 4  ] (4.3) ndet(n~) = N~ - n~ 

Processing the terms in Eq. (3.6) in order of increasing n~, and according to 
'types', reduces the number of contributions from N~ to: 

I N - 4  1 2 1 4 1 2  N, = • (4.4) 
np Nfl - nfl n~ 

Values of Na and N t are listed in Table 4 for the cases considered in Table 2. A 
further advantage of processing the terms in this way is that the list of 'allowed' 
permutations (i.e. a with a, fl with fl) depends only on n~ and on the types (itype 
and jtype) of the determinants (idet and jdet). 

In that each cofactor Si j (# i . . .#41v l . . . v4)  is used only once, it is most 
practical to assemble them in situ as products of the precomputed minors. We 
denote the relevant product of (unsigned) minors as s(jket, ibra, jdet, idet) and 
the corresponding phase factor is P(ibra, idet)x P(jket, jdet). The array C 
contains the spin-coupling coefficients in the determinantal basis and the array b 
contains the values of bik (Eq. (3.1)). 

The strategy currently employed for the computation of the required density 
matrices is outlined in Scheme I: we have adopted the convention that when 
variables appear in parentheses to the left of an equality, then the notation 
signifies that all allowed values are processed together in a fully-vectorized DO 
loop nest. Thus for, example, the phrase 'Construct AIJ(jket, jdet, idet)' (if 
#4 # N) means that jket runs from 1 to ibra, and that jdet and idet each take 
ndet(n~) values, with the loops processed in the usual 'column major' or 
'subscript progression' order. 

In actual practice, greater efficiency has been achieved, for example, by 
combining jket and jdet, whenever they occur, into a single index and, of course, 
by accumulating various intermediate quantities. A further saving arises if 
N~ = N~: the upper limit on the loop over n~ is reset to rain(2, N~), and 
contributions from terms with n~ < 2 are included twice. A further, more modest 

Table 4. Number  of  distinct cases which survive the spin 
integration factors in the construction of D 4 and D 4 from 
cofactors 

N S N a N 2 N t 

6 0 20 400 160 
7 ½ 35 1225 485 
8 0 70 4900 1553 
9 ½ 126 15876 5626 

10 0 252 63504 18036 
11 ½ 462 213444 71246 
12 0 924 853776 227360 
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improvement might be achieved by exploiting the fact that different cofactors, 
SIJ(#l " " ' ~ 4  I Vl " " ' ]14), c a n  t a k e  t h e  s a m e  value, mostly b e c a u s e  o f  t h e  symmetry 
of the spin integration factors. This feature has not yet been exploited in our 
codes. 

The relative costs of the different parts of the scheme vary somewhat with the 
number of electrons and with the dimension of the spin space, so that it is 
difficult to present meaningful operation counts. However, the construction of 
AIJ (if #4 ~ N) or of BIJ (if/14 = N) always remains a key step. For given values 
of ibra and jket, the number of products of minors processed is Nt (Eq. (4.4)). 
The assembly from precomputed minors of a given s(jket, ibra, jdet, idet) re- 
quires one multiply. 

In addition to (part of) the orbital/orbital block of the Hessian, the scheme 
generates both D 3 and D3: it is straightforward to generate from these all of the 
other density matrices required. The largest memory requirement of the current 
implementation of the super-cofactor approach arises from D3: it should prove 

SCHEME I The basic strategy used in the super-cofactor approach 
Do ibra = 1, nbra 

Do na = max(0,4 - N~), min(4,Na) 
Do itype = 1, ntype(np) 

Do jtype = 1, ntype(nt3 ) 
If  (#4 :~ N) then 

Construct AIJ(jket,jdet,idet) = s(jket,ibra,jdet,idet) x P(jket,jdet) x C(jdet) 

Construct AI(jket,idet) = ~ AIJ(jket,jdet,idet) 
jdet 

Construct A(jket) = ~ AI(jket,idet) x P(ibra,idet) x C(idet) 
idet 

Perform 'allowed' permutations of  the v's, i.e. use A(jket) to update D4(jket, l:4!) 
Else If (#4 = N) then 

Construct BIJ(jket,jdet,idet) = s(jket,ibra,jdet,idet) x P(jket,jdet) x P(ibra,idet) 

Construct BI(jket,idet) = }~ BIJ(jket,jdet,idet) x C0det) 
jdet 

and BJ(jket, jdet) = ~ BIJ(jket,jdet,idet) x C(idet) 
idet 

Construct Bk(k,jket) = ~ BI0ket,idet) x b(k,idet) 
idet 

+ ~ BJ(jket,jdet) x b(k,jdet) 
jdet 

Perform 'allowed' permutations of the v's, i.e. use Bk(k,jket) to update 
D4k(k,jket, 1:4!) 

End if 
End Do (jtype) 

End Do (itype) 
End Do (nl0 
If (#4 = N) Contract D4k to D4, D4k to D~, and D4 to D 3 
Use D4 to update the orbital/orbital block of the Hessian 
Discard D4, D4k, AIJ, AI, A, BIJ, BI, BJ and Bk 

End DO (ibra) 
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possible to generate efficiently (and to process efficiently) this density matrix in 
sections, in much the same way as D 4 and D 4. When required, the matrix 
elements of the hamiltonian, Hkt, and the overlap integrals between spin-coupled 
structures, A~I, are computed directly from minors, obviating the need to store 
any D],I density matrices. The spin/spin block of the Hessian is assembled by 
means of Eq. (2.12), using matrix elements still available from the most recent 
energy evaluation. 

5 Conclusions 

The expansion of the spin-coupled wavefunction in Slater determinants con- 
structed from nonorthogonal spin-orbitals makes it possible to calculate from 
cofactors of the appropriate overlap matrix all of the density matrices required 
for the simultaneous optimization of the orbitals and the spin-coupling co- 
efficients. From a comparison of the entries in Tables 1, 3 and 4, it is clear that 
the computational effort associated with the new strategy, which we term the 
'super-cofactor approach', scales in a much more acceptable way with increasing 
N than the earlier 'symmetric group approach'. This has been borne out by a 
number of applications to systems such as naphthalene [17], the reaction of 
singlet methylene with H2 [18], the process of breaking the triple bond in HCN 
[19], clusters of lithium atoms [20], and the nature of the bonding in B2H 6 [21], 
and by a number of studies in progress. 
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